

Ph. 480-503-4295 | LCD@FocusLCDs.com

TFT | OLED | CHARACTER | GRAPHIC | UWVD | SEGMENT | CUSTOM

Graphic Display Module

Part Number G12864A-KB-LW63

Overview:

- 128x64 Graphic LCD
- FSTN Black Negative
- 89.7x49.8mm Module
- Parallel and Serial Interfaces
- Blue LED Backlight

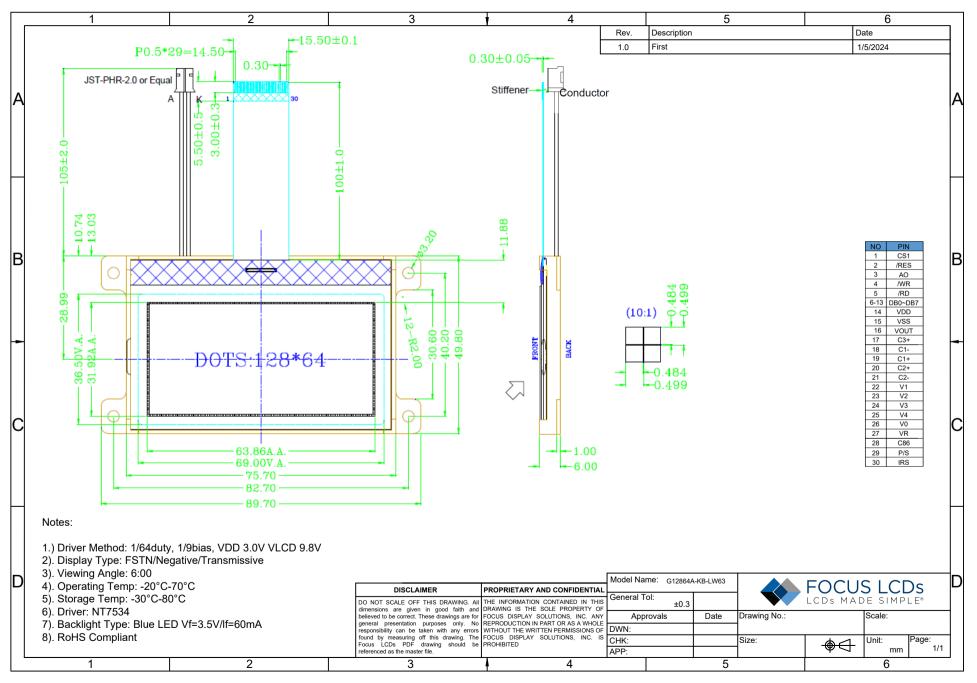
- Transmissive
- Wide Temp Range
- 3.5V
- LCD IC: NT7534
- RoHS Compliant

Graphic LCD Features

Resolution: 128x64 Dots

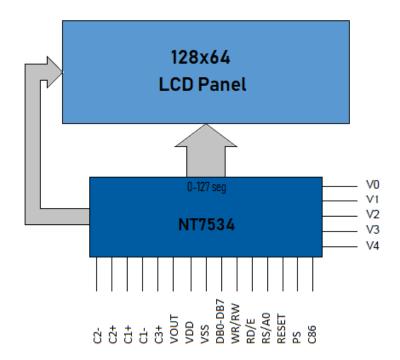
Interface(s): 8-bit Parallel (6800/8800), 4SPI interfaces

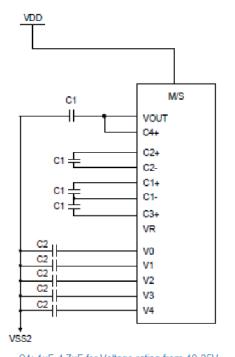
RoHS Compliant.


General Information Items	eral Information Items Main Panel				
Viewing Area (VA)	69.00 (H) x 36.50 (V)	mm			
LCD Type	FSTN Negative				
Viewing Angle	6:00	O'Clock			
Polarizer	Transmissive				
Backlight Type	LED				
Backlight Color	Blue				
LCD IC	NT7534				
Drive Mode	1/64 Duty, 1/9 Bias				
Operating Temperature	-20 to +70	°C			
Storage Temperature	-30 to +80	°C			

Mechanical Information

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)		89.70		mm	
Module Size	Vertical (V)		49.80		mm	
0.20	Depth (D)		6.00		mm	
	Weight		33.0		g	Approximate





2. Block Diagrams

Capacitance 1uF-2.2uF

C1: 1uF-4.7uF for Voltage rating from 10-35V C2: 1uF-2.2uF for Voltage rating from 6.3-25V

NOTE: See IC controller spec NT7534 for more information on internal voltage regulating circuits. Additional information on DC-DC voltage regulating circuits for graphic LCD's is available on our website at www.FocusLCDs.com.

3. Input Terminal Pin Assignment

NO.	Symbol	Description	I/O
1	CS1	Chip select in serial interface; low is active.	MPU
2	/RES	When /RES is set to "L", the settings are initialized. The	MPU
	/KES	reset operation is performed by the /RES signal level.	IMPU
3	A0	Selects registers. 0: instruction; 1: data register.	MPU
4	/WR	Read/write select signal.	MPU
5	/RD	Operation (data read/write) enable signal.	MPU
6-11	DB0~DB5	Display Data.	MPU
12	DB6 (SCL)	Display Data (or Serial Data Clock Signal Input).	MPU
13	DB7 (SI)	Display Data (or Serial Data Input).	MPU
14	VDD	Power supply for logic for LCM.	Р
15	VSS	Signal ground for LCM.	Р
16	VOUT	DC/DC voltage converter output.	Р
17	C3+		
18	C1-		
19	C1+	For yellows has star sirewit Futamed some sites about 0.4.4F 0.24.F	
20	C2+	For voltage booster circuit. External capacitor about 0.1uF~2.2uF.	P
21	C2-		
22	V1		
23	V2		
24	V3	Power Supply for LCD.	P
25	V4	1 ewel supply let 202.	•
26	V0		
27	VR	Voltage adjustment pin. Applies voltage between V0 and VSS using a resistive divider.	MPU
28	C86	This is the MPU interface switch pin. When C86="H": 6800 series MPU interface. When C86="L": 8800 series MPU interface.	MPU
29	P/S	This is the parallel data input / serial data input switch pin. When P/S="H": Parallel data input. When P/S="L": Serial data input.	MPU
30	IRS	This pin selects the reistors for the V0 voltage level adjustment.	MPU

4. LCD Optical Characteristics

FSTN type display module (Ta=25°C, V_{DD}=3.0V)

Item		Symbol	Ol Condition Min		Тур.	Max	Unit
Contrast F	Ratio	CR			6		
Deepense Time	On	T _{on}			150	250	ms
Response Time	Off	T_{off}			150	250	ms
	Uor	Θ_{L}		-60		35	
Viewing	Hor.	Θ _R	CR≥2	-60		35	
Angle C _R ≥ 2, 25°C	Vor	Ver.		-40		40	degree
	ver.	ΘВ		-40		40	

5. Electrical Characteristics

5.1 Absolute Maximum Rating

Characteristics	Symbol	Min	Max	Unit
Power Voltage Logic	V_{DD}	0.3	3.6	V
Input Voltage	V _{IN}	-0.3	V _{DD} + 0.3	V
Power Supply for LCD	V ₀ - V _{ss}	-0.3	14.2	V
Operating Temperature	T _{OP}	-20	+70	°C
Storage Temperature	T _{ST}	-30	+80	°C

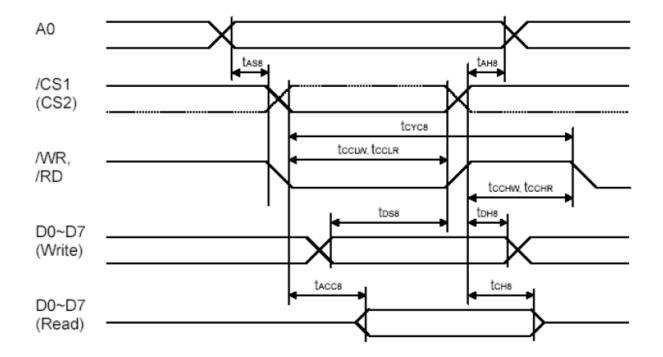
NOTE: If the absolute maximum rating of the above parameters is exceeded, even momentarily, the quality of the product may be degraded. Absolute maximum ratings specify the values which the product may be physically damaged if exceeded. Be sure to use the product within the range of the absolute maximum ratings.

5.2 DC Electrical Characteristics

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for LCD	V ₀ -V _{ss}	Ta = 25°C	9.3	9.8	12.7	V
Supply Voltage for Logic	V_{DD}		2.8	3.0	3.3	V
Supply Current	I _{DD}	Ta = 25° C, V_{DD} = 3.0 V		1.1	1.6	mA
Backlight Supply Voltage	V _F		2.8	3.0	3.2	V
Backlight Supply Current	I _{LED}	V _F = 3.5V	30	60	90	mA

Condition:

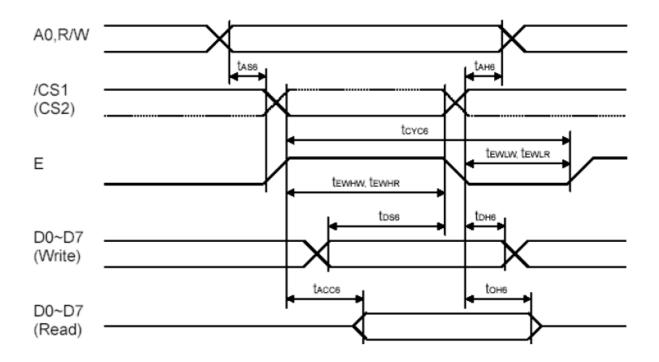
- 1. VDD = 3.0V
- 2. 1/64 Duty, 1/9 Bias



6. Signal Timing Characteristics

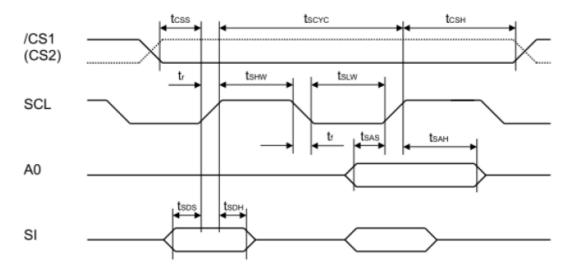
6.1 8-bit Parallel Timing Characteristics (8080-series)

Parameter	Signal	Symbol	Min	Max	Unit	Note
Address hold time		tah8	0		ns	
Address setup time	A0	tas8	0		ns	
Address cycle time		tcyc8	240		ns	
Enable L pulse width (write)	WR	tcclw	90		ns	
Enable H pulse width (write)	VVK	tcchw	100		ns	
Enable L pulse width (read)	RD	t cclr	120		ns	
Enable H pulse width (read)	ΚD	t cchr	60		ns	
Write data setup time		tDS8	40		ns	
Write address hold time	DD0 DD7	tDH8	10		ns	
Read access time	DB0-DB7	tacc8		140	ns	CL=100pF
Read output disable time		t cH8	5	50	ns	CL=100pF


System Buses Read/Write Characteristics (for 8080 Series MPU)

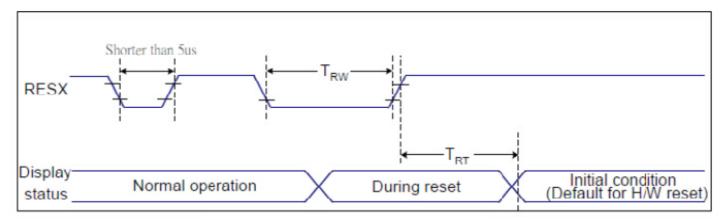
6.2 8-bit Parallel Timing Characteristics (6800-series)

Parameter	Signal	Symbol	Min	Max	Unit	Note
Address hold time		tah6	0		ns	
Address setup time	A0	tas6	0		ns	
Address cycle time		tcyc6	240		ns	
Enable L pulse width (write)	WR	tewlw	100		ns	
Enable H pulse width (write)	VVI	tewnw	90		ns	
Enable L pulse width (read)	DD	tewlr	60		ns	
Enable H pulse width (read)	RD	tewhr	120		ns	
Write data setup time		tDS6	40		ns	
Write address hold time	DD0 DD7	tDH6	10		ns	
Read access time	DB0-DB7	tacc6		140	ns	CL=100pF
Read output disable time		toн6	5	50	ns	CL=100pF



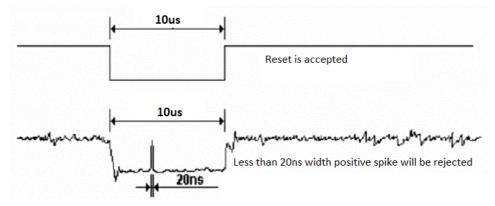
6.3 Serial Interface

(VDD=3.0V, Ta=25°C)


Parameter	Signal	Symbol	Min	Max	Unit	Note
Serial Clock Period		Tscyc	120		ns	
SCL "H" pulse width	SCL	Tshw	60		ns	
SCL "L" pulse width		Tslw	60		ns	
Address setup time	40	Tsas	30		ns	
Address hold time	A0	Тѕан	20		ns	
Data setup time	CI	Tsds	30		ns	
Data hold time	SI	Tsdh	20		ns	
Chip select setup time	CC	Tcss	20		ns	
Chip select hold time	CS	Тсѕн	40		ns	

Serial Interface Timing

6.4 Reset Timing


	Symbol	Parameter	Min	Max	Unit
RESX	t _R	Reset time	-	1.0	us
RESA	t _{RW}	Reset 'L' pulse width	10	-	us

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not because irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9 us	Reset starts

- 3. During the resetting period, the display will be blanked (the display is entering blanking sequence, which maximum time is 120ms, when reset starts in Sleep Out mode. The display remains the blank state in Sleep in mode) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5ms after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120ms.

7. Command Table

Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Description
(1) Display OFF	0	1	0	1	0	1	0	1	1	1	0		Turn on LCD panel when high, and turn off when low
(2) Display Start Line Set	0	1	0	0	1		Disp	lay Sta	art Ado	iress		40h to 7Fh	Specifies RAM display line for COM0
(3) Page Address Set	0	1	0	1	0	1	1	F	age A	ddres	s	B0h to B8h	Set the display data RAM page in Page Address register
(A) Column Address Col	0	1	0	0	0	0	1	Н	ligher Add	Colum ress	nn	00h	Set 4 higher bits and 4 lower bits of column address of display data
(4) Column Address Set	0	1	0	0	0	0	0	L	ower o	Colum	ın	to 18h	RAM in register
(5) Read Status	0	0	1		Sta	tus		0	0	0	0	XX	Reads the status information
(6) Write Display Data	1	1	0				Write	Data				XX	Write data in display data RAM
(7) Read Display Data	1	0	1				Read	Data				XX	Read data from display data RAM
(8) ADC Select	0	1	0	1	0	1	0	0	0	0	0		Set the display data RAM address SEG output correspondence
(9) Normal/Reverse Display	0	1	0	1	0	1	0	0	1	1	0		Normal indication when low, but full indication when high
(10)Entire Display ON/OFF	0	1	0	1	0	1	0	0	1	0	0		Select normal display (0) or entire display on
(11)LCD Bias Set	0	1	0	1	0	1	0	0	0	1	0	A2h A3h	Sets LCD driving voltage bias ratio
(12)Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	E0h	Increments column address counter during each write
(13)End	0	1	0	1	1	1	0	1	1	1	0	EEh	Releases the Read-Modify-Write
(14)Reset	0	1	0	1	1	1	0	0	0	1	0	E2h	Resets internal functions
(15)Common Output Mode Select	0	1	0	1	1	0	0	0		٠		C0h to CFh	Select COM output scan direction *: invalid data
(16)Power Control Set	0	1	0	0	0	1	0	1	Opera	ation S	Status	28h to 2Fh	Select the power circuit operation mode
(17)V0 Voltage Regulator Internal Resistor ratio Set	0	1	0	0	0	1	0	0	Res	istor F	Ratio	20h to 27h	Select internal resistor ratio Rb/Ra mode
(18)Electronic Volume mode Set	0	1	0	1	0	0	0	0	0	0	1	81h	
Electronic Volume Register Set	0	1	0	٠	•		Electr	onic C	ontrol	Value	1	хх	Sets the V0 output voltage electronic volume register
(19)Set Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0		Sets static indicator ON/OFF 0: OFF, 1: ON
Set Static Indicator Register	0	1	0	٠	٠	•	*	٠	•	Мо	de	хх	Sets the flash mode
(20)Power Save	0	1	0	,	-	,	-	-	-	-	-	-	Compound command of Display OFF and Entire Display ON
(21)NOP	0	1	0	1	1	1	0	0	0	1	1	E3h	Command for non-operation

8.0 Cautions and Handling Precautions

8.1 Handling and Operating the Module

- 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assembly work.
- 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit.
- 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch the surface.
- 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur.
- 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap.
- 8. Protect the module from static; it may cause damage to the CMOSICs.
- 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- 10. Do not disassemble the module.
- 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- 12. Pins of I/F connector shall not be touched directly with bare hands.
- 13. Do not connect, disconnect the module in the "Power ON" condition.
- 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence.

8.2 Storage and Transportation

- 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%
- Do not store the TFT-LCD module in direct sunlight.
- 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light.
- 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside.
- 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.