
SPECIFICATION SHEET FOR:

FDS16x2(75x31)SDC

Mechanical Specification

ITEM	STANDAR	D VALUE		UNIT	•
NUMBER OF CHARACTERS	16 CHARACTE	RS X 2 LINES			
CHARACTER FORMAT	5 X 8 I	OOTS			
MODULE DIMENSION EDGE LED BACKLIGHT	80.0 (W) X 36.0	(H) X 12.0 (T)		mm	
VIEWING DISPLAY AREA	64.0 (W) X	(16.0 (H)		mm	
ACTIVE DISPLAY AREA	56.21 (W) X	(11.50 (H)		mm	
CHARACTER SIZE	2.96 (W) X	mm			
CHARACTER PITCH	3.55 (W) X	mm			
DOT SIZE	0.56 (W) X	(H) 0.60		mm	
DOT PITCH	0.60 (W) X	mm			
EDEC LED BACKLIGHT COLOR		WHITE			
BACKLIGHT INPUT	DC +4.0V	(PE)	mA		
BACKLIGHT LIFT TIME	20,000 (AVOID LIG	25℃)	HR.		

Mechanical Diagram

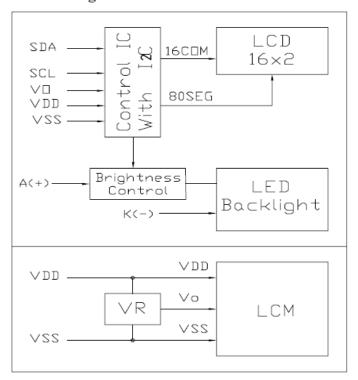
Absolute Maximum Ratings

ITEM	SYMBOL	MIN.	TYPE	MAX.	UNIT		
INPUT VOLAGE	VI	VSS	_	VDD	V		
SUPPLY VOLTAGE FOR LOGIC	VDD-VSS	_	5.0	5.5	V		
SUPPLY VOLTAGE FOR LCD	VLCD	_	_	5.5	V		
STN NORMAL TEMPERATURE RANGE	OPTERATING	0~+50	STORAGE	- 10∼+60	°C		
STATIC ELECTRICITY	Be sure that you are grounded when handing LCM.						

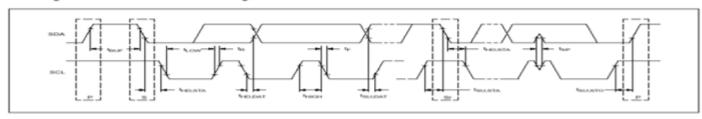
Electrical Characteristics

ITEM	SYN	CONDITION	MIN.	TYPE	MAX.	UNIT
SUPPLY VOLTAGE FOR LOGIC	VDD-VSS		4.5	5.0	5.5	V
		Ta=0°C		4.0		V
SUPPLY VOLTAGE FOR LCD	VLCD	Ta=25℃		4.3	4.5	V
		Ta=+50°C		4.6		V
INPUT HIGH VOLTAGE	VIH		0.8VDD		VDD	V
INPUT LOW VOLTAGE	VIL		0		0.1VDD	V
OUTPUT HIGH VOLTAGE	VOH		0.8VDD			V
OUTPUT LOW VOLTAGE	VOL				0.1VDD	V
SUPPLY CURRENT	IDD	VDD=+5V		3.0	4.5	mA

Optical Characteristics


Ta at 25℃

ITEM	SYM	CONDITION	MIN.	TYPE	MAX.	UNIT
VIEW ANGLE (BOTTOM / TOP)	$\theta 1 \sim \theta 2$	CR≥2		45° / 35°		deg.
VIEW ANGLE (LEFT/RIGHT)	$\varphi 1 \cdot \varphi 2$	CR≥2		35° / 35°		deg.
CONTRAST RATIO	CR			8		
RESPONSE TIME (RISE)	TON/Tr			170		mS
RESPONSE TIME (DECAY)	TOFF/Tf			220		mS


Interface Pin Connections(CN3)

NO	SYMBOL	LEVEL	FUNCTION
1	VSS		GND (0V)
2	VDD		DC +5V
3	VO	H/L	Contrast Adjust
4	SDA	H/L	Serial Data Line
5	SCL	H/L	Serial Clock Line
6	A(+)		LED Backlight

Block Diagram

Timing Control I2C Bus Timing

I2C Bus Timing Specification

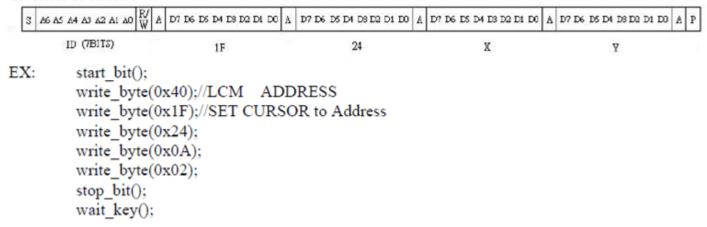
	GVAROI	STANDAR		
PARAMETER	SYMBOL	MIN.	MAX.	UNIT
SCL clock frequency	fsc1	-	100	kHz
Hold tie (repeated) START condition.	t hd:sta	4.0	-	us
Low period of the SCL clock	tLow	4.7	-	us
HIGH period of the SCL clock	tнісн	4.0	-	us
Set-up time for a repeated START condition	tsu;sta	4.7	-	us
Data hold time. For I2C-bus device	t hd;dat	0	3.45	us
Data set-up time	t su;dat	250	-	ns
Rise time of both SDA and SCL signals	tr	30	1000	ns
Fall time of both SDA and SCL signals	$t_{\rm f}$	30	300	ns
Set-up time for STOP condition	tsu:sto	4.0	-	us
Bus free time between a STOP and START	t BUF	4.7	1	us
Capacitive load for each bus line	Сь	-	400	рF
Noise margin at the LOW level for each connected device (including hysteresis)	V_{nL}	0.1 Vdd	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V_{nH}	0.2 V _{DD}	-	V

Note 1: It depends on the "high" period time of SCL.

	I I ² C-bus devices	0	Oten dead		
Symbol	Parameter	Conditions	Standard- Min	mode Max	Unit
f _{SCL}	SCL clock frequency		10	100	kH
t _{HD;STA}	hold time (repeated) START condition	After this period, the first clock pulse is generated.	4.0	-	μs
t _{LOW}	LOW period of the SCL clock		4.7		μs
t _{HIGH}	HIGH period of the SCL clock		4.0		μs
tsu;sta	set-up time for a repeated		4.7	-	μS
t _{hd;dat}		CBUS compatible masters	5.0	-	μs
		I ² C-bus devices	0	-	μS
SU;DAT	data set-up time		250		ns
t _r	rise time of both SDA and SCL signals			1000	ns
t _f	fall time of both SDA and SCL signals			300	ns
tsu;sto	set-up time for STOP condition		4.0	-	μS
BUF	bus free time between a STOP and START condition		4.7	-	μs
Сь	capacitive load for each bus line		-	400	pF
VD;DAT	data valid time			3.45	μS
VD;ACK	data valid acknowledge time			3.45	μs
V _{nL}	noise margin at the LOW level		0.1V _{DD}	-	٧
VnH	noise margin at the HIGH level	for each connected device (including hysteresis)	0.2V _{DD}	-	٧

^[1] thd; DAT is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.

^[2] A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL.


- [3] The maximum tHD;DAT could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [4] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement tsu;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tsu;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
- [5] Cb = total capacitance of one bus line in pF.
- [6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall tim for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.
- [7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [8] The maximum bus capacitance allowable may vary from this value depending on the actual operating voltage and frequency of the application.
- [9] tVD;DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).
- [10] tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA output (HIGH or LOW depending on which one is worse).

Note: After Power On , initialize LCD to receive command needs 50ms.

Instruction Set for I2C

		Command Code														Data														
			1	st 1	bу	te					21	nd	by	te			1 st byte					Τ	2 nd byte							
function		В	В	В	В		В	В			В	В		В	В		D D D B B B 7 6 5	В	В	_		3 1	В		В	B	B	_		
LCM Address	0	1	0	0	0	0	0	0					•				-									LCM I ² C Address Send this value Before command				
Set cursor To Address	0	0	0	1	1	1	1	1	0	0	1	0	0	1	0	0		2	x			Y				Set cursor position 01h≤X≤10h 01h≤Y≤02h				
Clear Display	0	0	0	0	1	1	0	0					-				-					Clear Display								
Initial Display	0	0	0	1	1	0	1	1	0	1	0	0	0	0	0	0						-								initial LCM
Set cursor off/on	0	0	0	1	1	0	1	1	0	1	0	1	1	1	1	1		1	N							-				Cursor off/on N = 00h / 01h
Backlight Brightness Minus	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0			-				_			Brightness Minus				
Backlight Brightness Plus	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1		- 1 - 1			Brightness Plus									
Write ASCII Code to LCD		Write Data																	-								Write ASCII Code to LCD			

Set cursor To Address


```
Clear Display
  S A6 A5 A4 A3 A2 A1 A0 W
                         A D7 D6 D5 D4 D3 D2 D1 D0 A P
         ID (7BITS)
EX:
         start bit();
         write byte(0x40); //LCM ADDRESS
         write byte(0x0C);//CLEAR DISPLAY
         stop_bit();
         wait key();
Set cursor On/Off
   A6 A5 A4 A1 A2 A1 A0 W
                     A D7 D6 D5 D4 D3 D2 D1 D0 A D7 D6 D5 D4 D3 D2 D1 D0 A D7 D6 D5 D4 D3 D2 D1 D0 A P
       ID (7BITS)
                               1B
                                                    5F
EX1:
          start_bit();
          write byte(0x40); //LCM ADDRESS
          write byte(0x1B);//SET CURSOR ON
          write byte(0x5F);
          write byte(0x01);
          stop bit();
          wait key();
EX2:
          start bit();
          write byte(0x40); //LCM ADDRESS
          write byte(0x1B);//SET CURSOR OFF
          write byte(0x5F);
          write byte(0x00);
          stop bit();
          wait key();
Initial LCD
  S A6 A5 A4 A3 A2 A1 A0 \stackrel{R'}{W} A D7 D6 D5 D4 D8 D2 D1 D0 A D7 D6 D5 D4 D8 D2 D1 D0 A
         ID (7B1T3)
                                                     40
EX:
          start bit();
          write byte(0x40); //LCM ADDRESS
          write byte(0x1B);//INITIAL LCD
          write byte(0x40);
          stop bit();
          wait key();
```

Backlight Brightness Control

```
D7 D6 D5 D4 D8 D2 D1 D0 A D7 D6 D5 D4 D9 D2 D1 D0 A
  3 A6 A5 A4 A3 A2 A1 A0
                              07
        ID (7BITS)
                                                 DIM
EX1:
         start bit();
         write byte(0x40); //LCM ADDRESS
         write byte(0x07);// BACKLIGHT Brightness ( - )
         write byte(0x00);
         write byte(0x07);
         write byte(0x00);
         write byte(0x07);
         write byte(0x00);
         write byte(0x07);
         write byte(0x00);
         stop bit();
         wait key();
EX2:
          start bit();
          write byte(0x40); //LCM ADDRESS
          write byte(0x07);// BACKLIGHT Brightness (+)
          write byte(0x01);
          write byte(0x07);
          write byte(0x01);
          write byte(0x07);
          write byte(0x01);
          write byte(0x07);
          write byte(0x01);
          stop bit();
          wait key();
Write ASCII Code to LCM
      A6 A5 A4 A3 A2 A1 A0 W
                            D7 D6 D5 D4 D3 D2 D1 D0
                                   Write Data
          ID (7BITS)
EX:
          start bit();
          write byte(0x40); //LCM ADDRESS
          for(i = 0x30; i < 0x43; i++)//WRITE ACSII CODE TO LCM
          write byte(i);
          stop bit();
          wait key();
```

```
write to I2C device external
void start bit()
     SDA = 0;
     sdelay();
     SCL = 0;
     sdelay();
void stop_bit()
     SDA = 0;
     sdelay();
     SCL = 1;
     sdelay();
     SDA = 1;
     sdelay();
}
void wait_ack()
     SDA = 1;
     SCL = 1;
     while(SDA == 1);
     sdelay();
     SCL = 0;
     sdelay();
}
void write_byte(unsigned char i2c_data)
     char i;
     temp = i2c data;
     for(i = 0; i < 8; i ++)
         if(i \ge 0)
         temp \le 1;
         SDA = b7;
         SCL = 1;
         sdelay();
         SCL = 0;
         sdelay();
    wait_ack();
void delay(unsigned int dly)
     while(dly--);
void sdelay()//DELAY 5u
```

Character Generator ROM Map

Lower	Higher 4 bit	CHAR	ACTE	R P	ATTE	RN	CHAI	RT(5	x7D	0TS+	CUR	SOR)	
4 bit		0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
	xxxx0000	CG RAM (1)					`	200 S			2	 	Q!	Ľ.
	xxxx0001	(2)							0 0 0 0 0 0 0		Ţ	Ľ.		
	xxxx0010	(3)	8 8	2		F.				-1.	Ų	×		
	xxxx0011	(4)	9 5 9 5 9 5 9 5 9 9				 .			ŗ	7		€.	×
	xxxx0100	(5)						·	٠.			17		
(1)	xxxx0101	(6)		5000	50550 50550 50550	900			H				S	
(Hexadecimal)	xxxx0110	(7)	8					Ų	7			_		<u>.</u>
(Неха	xxxx0111	(8)	7	7				Ņ	ï		X	7		T.
Code	xxxx1000	(1)	(X		×	4	,		Ļ	Ţ	×
Character	xxxx1001	(2))			V	i	•	ij	7		ıĻ	[
	xxxx1010	(3)	*	21		Z.	- 12				******	Ŀ		
3) of	xxxx1011	(4)		7	K	0	k.	{	71	.	5000		×	3":
(D0-D3)	xxxx1100	(5)	7	<					t	<u>.</u> .		ŗ	4	5-5-1
4-bit	xxxx1101	(6)		50550		8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M	>		.~.	^,			
Lower	xxxx1110	(7)	==	>		^	i"i	-9	0550 0550 0550	12		··	F	
7	xxxx1111	(8)		?				*	111	!!	₹		Ö	